Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(10)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37893234

RESUMO

To date, insufficient investigation has been carried out on the biocompatibility of synthetic bioactive bone substitute materials after traumatically induced bone fractures in clinical conditions. This study encompasses the safety, resorption, healing process, and complications of surgical treatment. Our current hypothesis posits that calcium phosphate-based bone substitutes could improve bone healing. In this retrospective case-control study, over 290 patients who underwent surgical treatment for acute fractures were examined. Bone defects were augmented with calcium phosphate-based bone substitute material (CP) in comparison to with empty defect treatment (ED) between 2011 and 2018. A novel scoring system for fracture healing was introduced to assess bone healing in up to six radiological follow-up examinations. Furthermore, demographic data, concomitant diseases, and complications were subjected to analysis. Data analysis disclosed significantly fewer postoperative complications in the CP group relative to the ED group (p < 0.001). The CP group revealed decreased risks of experiencing complications (p < 0.001), arthrosis (p = 0.01), and neurological diseases (p < 0.001). The fracture edge, the fracture gap, and the articular surface were definably enhanced. Osteosynthesis and general bone density demonstrated similarity (p > 0.05). Subgroup analysis focusing on patients aged 64 years and older revealed a diminished complication incidence within the CP group (p = 0.025). Notably, the application of CP bone substitute materials showed discernible benefits in geriatric patients, evident by decreased rates of pseudarthrosis (p = 0.059). Intermediate follow-up evaluations disclosed marked enhancements in fracture gap, edge, and articular surface conditions through the utilization of CP-based substitutes (p < 0.05). In conclusion, calcium phosphate-based bone substitute materials assert their clinical integrity by demonstrating safety in clinical applications. They substantiate an accelerated early osseous healing trajectory while concurrently decreasing the severity of complications within the bone substitute cohort. In vivo advantages were demonstrated for CP bone graft substitutes.

2.
Scanning ; 37(1): 63-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25639882

RESUMO

Repetitive freeze/thaw cycles lead to a progressive loss of structural and molecular integrity in deep frozen specimens. The aim of this study was to evaluate a micro-CT stage, which maintains the cryoconservation of large specimens throughout micro-CT imaging. Deep frozen ovine vertebral segments (-20 °C) were fixed in a micro-CT stage made of expanded polystyrene and cooled with dry ice (0 g, 60 g and 120 g). The temperature inside the stage was measured half-hourly over a time span of three hours with subsequent measurement of surface temperature. The method was validated in a series of 30 deep frozen vertebral specimens and in liver tissue after repetitive micro-CT scanning. Isolation without cooling resulted in defrosting. Cooling with 60 g of dry ice led to a temperature rise inside the stage (max. 5.1 °C) and on the specimen surfaces (max. -3 °C). Cooling with 120 g of dry ice resulted in a significant (p < 0.001) and sufficient lowering of the temperature inside the stage (max. -14 °C) and on the surface of the specimens (max. -13.9 °C). The surface temperature during the subsequent micro-CT validation study did not exceed -16 °C (processing time 1 h 45 min). The resolution was 33 µm isotropic voxel side length, enabling a binarization of bone microstructures. Temperature can reliably be maintained below -10 °C during a micro-CT scan by applying the described technique. The resulting spatial resolution and image quality permits a binarization of bone microstructure.


Assuntos
Congelamento , Manejo de Espécimes/métodos , Coluna Vertebral/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Animais , Fígado/diagnóstico por imagem , Ovinos , Temperatura
3.
Biomaterials ; 34(34): 8589-98, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23906515

RESUMO

The first objective was to investigate new bone formation in a critical-size metaphyseal defect in the femur of ovariectomized rats filled with a strontium modified calcium phosphate cement (SrCPC) compared to calcium phosphate cement (CPC) and empty defects. Second, detection of strontium release from the materials as well as calcium and collagen mass distribution in the fracture defect should be targeted by time of flight secondary ion mass spectrometry (TOF-SIMS). 45 female Sprague-Dawley rats were randomly assigned to three different treatment groups: (1) SrCPC (n = 15), (2) CPC (n = 15), and (3) empty defect (n = 15). Bilateral ovariectomy was performed and three months after multi-deficient diet, the left femur of all animals underwent a 4 mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with SrCPC or CPC or was left empty. After 6 weeks, histomorphometric analysis showed a statistically significant increase in bone formation of SrCPC compared to CPC (p = 0.005) and the empty defect (p = 0.002) in the former fracture defect zone. Furthermore, there was a statistically significant higher bone formation at the tissue-implant interface in the SrCPC group compared to the CPC group (p < 0.0001). These data were confirmed by immunohistochemistry revealing an increase in bone-morphogenic protein 2, osteocalcin and osteoprotegerin expression and a statistically significant higher gene expression of alkaline phosphatase, collagen10a1 and osteocalcin in the SrCPC group compared to CPC. TOF-SIMS analysis showed a high release of Sr from the SrCPC into the interface region in this area compared to CPC suggesting that improved bone formation is attributable to the released Sr from the SrCPC.


Assuntos
Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Fraturas Ósseas/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Estrôncio/farmacologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis/química , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Determinação de Ponto Final , Feminino , Fêmur/efeitos dos fármacos , Fêmur/cirurgia , Imuno-Histoquímica , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ovariectomia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...